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The structure of the Stewartson layers in a gas centrifuge. 
Part 2. Insulated side wall 
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Department of Aeronautical Engineering, Kyoto University, Kyoto, Japan 
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The Stewartson E4- and E*-layers in a rapidly rotating compressible fluid are con- 
sidered within the framework of linearized equations and the boundary-layer method. 
The fluid is contained in a cylinder made of a thermally insulated side wall and con- 
ducting top and bottom end plates. The end plates and the side wall rotate with slightly 
different angular velocities. The case of an incompressible fluid was discussed by 
Stewartson, who found that the flow is restricted to the side-wall boundary layers. In  
the case of a compressible fluid, however, the solutions are strongly dependent upon 
the thermal boundary conditions assumed on the side wall. In particular, if the wall is 
insulated the fluid in the inner core is dragged along too since it is coupled strongly to 
the flow in the side-wall Stewartson layers. The critical parameter governing the 
solutions is found to be (y - 1) PrG, E-4 f 4y, where y is the ratio of specific heats, Pr the 
Prandtl number, Go the square of the rotational Mach number and E the Ekman 
number. 

1. Introduction 
The dynamics of rotating fluids have been mainly developed in the field of geo- 

physics (see, for example, Greenspan 1967). In  this field Coriolis forces play a dominant 
role while centrifugal forces are negligible. Another application of rotating-fluid 
dynamics is the engineering device known as the gas centrifuge, which is used for the 
separation of uranium isotopes. In  this device the centrifugal force is as much as a factor 
of 105 greater than gravity, and therefore cannot be neglected. 

Thermally driven meridional flows in a rapidly rotating cylinder have been con- 
sidered by Barcilon & Pedlosky (1967) for the case where the centrifugal force is of the 
same order as gravity, while Homsy & Hudson (1 969) studied the case where the centri- 
fugal force is much greater than gravity on the basis of the Boussinesq approximation. 
The Boussinesq approximation, however, is inappropriate for describing a gas centri- 
fuge, since the peripheral speed of the gas is as large as 400 m/s and consequently the 
rotational Mach number exceeds unity. In  view of this fact, several workers, including 
the present authors, have developed the theory of rapidly rotating compressible fluids 
(Sakurai & Matsuda 1974; Matsuda, Sakurai & Takeda; 1975 Matsuda, Hashinioto & 
Takeda 1976; Matsuda & Hashimoto 1976; these papers will be referred to as I ,  11, I11 
and IV respectively). The theory has been applied to practical gas centrifuges by 
Nakayama & Usui (1974) and by Matsuda (1975, 1 9 7 6 ~ ) .  Recently Durivault & 

t Temporary Address : Department of Applied Mathematics and Astronomy, University 
College, Cardiff, Wales. 
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Louvet (1976a)  derived similar solutions and obtained essentially the same result as 
that in I. 

In I-IV, the authors avoided the appearance of a Stewartson El-layer by imposing 
appropriate boundary conditions, but this was only for the sakeof simplicity. However, 
an El-layer must be present in a gas centrifuge owing to the presence of narrow source 
and/or sink slits (11) or scoops for collectinggas. Recently Matsuda (19766)  proposed a 
gas centrifuge in which the end plates rotate faster than the side wall in order to 
improve the efficiency of the centrifuge. In such a device the appearance of an 
Ef-layer is inevitable. In  view of these facts, it is important to investigate the 
structure of a Stewartson Ei-layer as well as the E*-layer in a rapidly rotating com- 
pressible fluid. 

Nakayama & Usui (1974)  considered the Stewartson layers by assuming the density 
scale height to be larger than the thickness of these layers and by expanding the equa- 
tions in terms of t,he ratio of the thickness to the scale height. While Durivault & 
Louvet ( 1  9766)  solved the 23)-layer numerically, Bark & Bark (1 976 ) found the exact 
solution for the El-layer and asymptotic solutions for the Ej-layer as well as numerical 
solutions. However these authors assumed that the cylinder walls are thermally 
conducting, i.e. that the temperature of the wall is specified. 

In  I11 and IV we stressed the important effect of the thermal boundary condition on 
the inner flow field, particularly if the walls are thermally insulated. The combined 
effect of the compressibility of the fluid and the thermal insulation of the walls pro- 
duces a flow distinctly different from that of Boussinesq fluids and from that of com- 
pressible fluids confined in a cylinder with thermally conducting walls. Therefore it is 
an interesting fluid-dynamic problem in itself to consider the case of thermally insu- 
lated walls, as well as being of practical importance for gas centrifuges. 

In  the present paper (and in the previous paper, Matsuda & Hashimoto 1978, 
referred to as part 1) we assume a simple configuration in which the top and bottom 
end plates rotate with angular velocity R, while the side wall rotates with a slightly 
different velocity R + AR. There are assumed to be no source-sink or temperature 
distributions on the end plates and we consider the case of a thermally insulated side 
wall and conducting end plates. The opposite case was considered in part 1.  

Before discussing the complicated mathematical details, we briefly consider the 
physical nature of the problem. As a first step we consider the case of a Boussinesq 
(incompressible) fluid. Figure 1 shows the flow field for this case in the r ,  z plane of the 
cylinder. The flow is divided into several regions : the inner inviscid core, the Stewart- 
son Ei-layer along the side wall, its extension to the top and bottom Ekman layers with 
thickness E), the Stewartson E*-layer and its extension to the Ekmanlayers. The two 
E* x Ei square regions in the corners will be ignored in the following since they are 
unimportant (shaded areas in figure 1 ) .  In  a frame rotating with angular velocity Q, 
there is no flow in the inner core on account of the Taylor-Proudman theorem. Along 
the side wall, however, there must be azimuthal flow of order unity so as to satisfy the 
side-wall conditions. (Here we non-dimensionalize the quantities such that the 
dimensionless AR becomes of order unity.) This azimuthal flow does not satisfy the 
boundary conditions a t  the top and bottom end plates, leading to the formation of the 
top and bottom Ekman layers with thickness E), which in turn induce a meridional 
flow of order EJ in the Ei-layer owing to Ekman suction. This flow circulates through 
the E*-layer and the Ekman extensions a8 shown in figure 1 .  In this case there is no 
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FIGURE 1. Schematic diagram of the flow field of an incompressible fluid in the T ,  z plane. 

closed circulation of magnitude O(E$ in the El-layer, as would appear if there were a 
z-dependent azimuthal flow in tho inner core (Hunter 1967). 

Now we turn to the case of a compressible fluid. As was stressed in 111 and IV, radial 
motion of fluid elements generates or absorbs heat via the work done by pressure 
forces. This heat supply or loss is compensated for by conduction through the side wall 
if i t  is conducting, but not in the case of an insulated wall. As radial motion mainly 
occurs along the wall, the coupled effect of compressibility and an insulated wall is 
drastic when the rotational velocity of the cylinder is so high that the rotational Mach 
number becomes of order unity. Figure 2 shows the flow field of a compressible fluid 
for a case similar to  that in figure 1. The mechanism producing the meridional circula- 
tion O(Et) through the El- and Ek-layers is the same as in the case in figure 1. However 
the outward motion of the circulation about the midplane generates heat, which pene- 
trates into the inner core and warms the fluid. The induced increase in temperature in 
turn produces an azimuthal thermal wind in the inner core. As this thermal wind 
should be z dependent, a closed circulation in the E*-layer is set up in this case in order 
to satisfy the side-wall boundary conditions. This closed circulation generates further 
heat owing to the associated radial motion, and the inner temperature field is further 
affected. The flow and the temperature field are determined by a11 these processes in a 
self-consistent manner. The most striking phenomenon is, therefore, that the inner 
fluid is dragged slightly in the direction of the velocity of the side wall. 
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FIGURE 2. Schematic diagram of the flow field of a compressible fluid in the r ,  z plane. 

In  5 2 the linearized basic equations and boundary conditions are given. In $ 3  we 
give a formal solution for the flow in the inner core and the boundary layers. In  $ 4 the 
equations derived in $ 3 are reduced to an infinite set of linear equations by an expan- 
sion method, and an approximate solution for these is obtained. Finally, we discuss the 
results in 8 5. 

2. Formulation 
A compressible fluid, such as UF,, is confined in a cylinder of radius L and height 2H 

rotating about its vertical axis. The rotational angular velocity of both the top and the 
bottom end plate is Q, while that of the side wall is Q + AQ. The temperature of the end 
plates is kept constant, say at Po, while the side wall is thermally insulated. i2 is 
assumed to be so high that gravity is negligible compared with the characteristic 
centrifugal acceleration Q2L. The peripheral speed of the cylinder QL is assumed to be 
of the order of the sound speed of the working fluid, therefore we must take into account 
the compressibility of the fluid. 

We shall linearize the equations with respect to the Rossby number 

6 = IAQl/Q; (2.1) 

then in the zero-order state the gas rotates rigidly with the end plates and the distri- 
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butions of the density and the pressure are determined by a balance between the 
centrifugal force and the pressure gradient: 

where M and R are respectively the mean molecular weight of the gas and the universal 
gas constant, P is the radial distance, fj2 the pressure at P = L and the tildes denote 
dimensional quantities. Before linearizing the equations, we define the following non- 
dimensional quantities : 

(2 .4 )  I ( r ,  z )  = ( f /&  z /L) ,  (u, V, W )  = (L Qe, $)/LQs, 
T = ( ~ - p o ) / ~ o T o ~ ,  P = ( ~ - P R ) / F R ~ ,  

where (&, PO, p , )  are dimensional velocity components in the rotating frame and Go will 
be defined in (2 .11) .  The ranges of r and z are 0 < r < 1 and - A  < z < A ,  where 
A = H / L .  

Assuming S to be small and neglecting nonlinear terms, we then obtain the following 
linearized equations : 

(2 .5 )  

(2.6) 

2u  = (E/ER)ZZ), (2 .7 )  

(2.8) 

(2 .9 )  

(2 .10)  

(2 .11)  

divq+G,ru = 0, 

- zv +rT + G,-lap/ar = ( E / e R )  [ 9 u  + Qa(div q)/ar], 

Gi1ap/aZ = ( E / + )  [Aw + $a(div q)/az], 

- 4hru = (E/E,) AT, 

div q = r-la@)/ar + aw/az, 9’ = A - r-2, A = a2/a+ ++a/& + a2/a9, 

Go = M(LQ)2/Rpo,  E = p/F, Q L 2 ,  h = ( y  - 1 ) P r G 0 / 4 y ,  eR = exp [+GO(r2- I ) ] .  

Here Pr is the Prandtl number, y the ratio of specific heats, p the viscosity coeficient, 
Go the square of the rotational Mach number, E the Ekman number and h a parameter 
representing the hardness (or compressibility) of gas. AS y is very close to unity for 
polyatomic molecules such as UF, (y  = 1.067 for UF,), the order of magnitude of h is 
10-2 even if Go is O( 1 ) .  In  a gas centrifuge the order of E is lo-, N lo-’ while Go is about 
20, but we assume Go to be O( 1 ) for the sake of simplicity. The boundary conditions 
applied to (2 .5) - (2 .9)  are 

u = v = w = O ,  T = O  on z = + A ,  (2 .12)  

u = w = O ,  V =  1,  aT/a r=o  on r =  1 .  (2 .13)  

3. Boundary-layer analysis 
Since we have neglected gravity, the boundary layers appearing near the side wall 

are the Stewartson E4- and E*-layers (Stewartson 1957), and other layers such as a 
buoyancy layer (Barcilon & Pedlosky 1967) do not appear. In  addition, since there 
exists an azimuthal wind in these layers, there must be Ekman layers at  their top and 
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bottom ends. The interior of the cylinder may be divided into the following regions: 
the inner inviscid core, the Ei-layer, its Ekman extensions, the E*-layer and its Ekman 
extensions (see figure 1) .  

Inner inviscid core 

In  the inner inviscid core we can neglect viscosity, therefore (2.6)-(2.8) reduce to 

vi = i ( r q  - G,-l api/ar),  ui = 0,  api/az = 0,  

where the suffix i denotes a value in the inner inviscid core. As can be seen, p i  is a 
function of r only, and since we have assumed the absence of any sources or sinks, 
vi(z = 5 A )  = 0. Noting that T,(z = f, A )  = 0, we can take p i  to be identically zero. 
Therefore we obtain the following thermal-wind relation: 

vi = QrT,. (3.1) 

Ei-layer 

In  order to analyse the E*-layer, we introduce the following scaling: 

( 3 4  

where quantities with a tildet are boundary-layer components of order unity, is a 
stretched radial co-ordinate and higher-order quantities are neglected.$ Inserting 
(3.2) into (2.5)-(2.9) and using the inner-core solutions, we obtain 

I u = E45, v = vi+v", w = E*iii, 

p = G o ( l + h ) E * @ ,  T=T,+hP,  [ = ( l - r ) / E i ,  

aa/ag- a i i i p z  = 0,  (3.3) 

- 2 5 + h ! Z " - ( l + h ) a p / a ~  = 0, (3.4) 

25 = a2v"/ap, (3.5) 

a@/az = 0, -45 = azP/ap, (3.6), (3.7) 

where we have put r = 1. The major error terms are O(Go Ea) and O(E4). In a practical 
gas centrifuge the terms O(Go Ei) are the larger since Go is greater than unity. In  view of 
this, Nakayama & Usui (1974) expanded the solutions in powers of Go E i ,  while Bark 
& Bark (1976) obtained the exact solution including the term of order Go E4. However, 
in the present analysis, we neglect the terms O(Go Ei) as well as those O(Ei) .  If we 
assume the side wall to be thermally insulated, the parameter a ( 5 hE-*) introduced 
in 111 appears in the problem and since the terms including a make the analysis very 
complicated compared with the case of a conducting side wall, we wish to avoid the 
additional complexity associated with the terms of order Go Et. In fact, in a prac- 
tical gas centrifuge, Go E i  is estimated to be at most O(1) while a is O(10). Therefore 
the effect of the a terms is more important than that of the Go E )  terms. 

Eliminating 5 from (3.5) and (3.7) and noting that 6, p+O as [+m, we obtain 

,ij = -@. (3.8) 

t Not to be confused with the original dimensional quantities. 
$ ui and wi are omitted because they are smaller than .ii and 3. 
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As the pressure is a function of ( only, the following relations are obtained from (3.4) 
and (3.8): 

(3.9) 

where f([) = - @3/at. Insertion of (3.9) into (3.5) gives 

ii = if”(0, (3.10) 

where a prime denotes differentiation with respect to t. Inserting (3.10) into (3.3) and 
integrating with respect to z ,  we obtain 

8 = i Z f ” ( 0  +s( t ) ,  (3.11) 

where g ( t )  is an unknown function to be determined later. As can easily be seen from 
the scaling (3.2), the mass flux in the Ei-layer is O(E4).  

Ekman extension of Ea-layer 

In  order to determine the unknown functions f(5) and g ( 0 ,  we need to consider the 
Ekman extension of the Et-layer, since the meridional flow in the Ea-layer is induced 
by Ekman suction. Let us scale the variables in this region as follows: 

] (3.12) 
u =a ,  v = vi+fi+6, w = Ef(G++8), 

T = q + h ( ! P + P ) ,  p = Go(l + h ) E f ( F + @ ) ,  7 = ( A  Tz)/E) ,  

where carets refer to variables in the Ekman layers, q is a stretched co-ordinate and k 
denote the top and bottom respectively. Substituting (3.12) into the basic equations, 
we obtain the following solutions: 

P = D*(E) e-aT cos q, fi = - B D * ( ~ )  e-vq cos q, (3.13) 

= -&(I +h)+D,(t)e-aqsincq, 8 = t(i +h) tD;( t )e -~~ (coscrq+sincr7), 
(3.14) 

where cr = [(l +h)e’&]*, and Dlt(g) will be determined later. Since T(z = ? A )  = 0, we 
obtain o = T + P =  -f(c)+DTt(E) on q = 0, i.e. z = ? A ,  (3.15) 

where we have imposed the conditions q ( r  = 1,  z = & A )  = 0, which will be shown to be 
consistent. The boundary conditions on v are automatically satisfied by (3.15). The 
velocity w satisfies the boundary conditions 

0 = G + 8  = +tAf”(g)+g(E)Ta(l+h)to;(~). (3.16) 

In order that (3.16) holds at  the top and bottom, g ( t )  should be zero and therefore 

Af”(5) - (1  + h)Y’([) = 0, (3.17) 

from (3.15). Sincef(5) andf’ft) must approach zero as t+m, we can easily integrate 
(3.17) to obtain 

f(5) = c exp [ - A-g(i + h)t E l ,  (3.18) 

where the constant c will be determined later. 
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Ea-layer 

The scaling of physical quantities in the E*-layer is 

(3 .19)  
p = G,E*p, T = q + h F ,  5 = ( l - r ) / E + ,  

where the bars denote variables in the E) boundary layer, which match onto the Ea- 
layer variables at the interface between these two layers. 

Substituting (3 .19)  into the basic equations and neglecting terms of order Go Ef, Ef 
and higher, we obtain the following equations : 

u = E f u ,  v = v i + V ,  w =W, 

au/a<- aw/az = 0, (3 .20 )  

(3 .21)  

2ii = a2v/ag2, (3 .22)  

@/a. = a2w/ap, -4u = azT/ap. (3 .23) ,  (3 .24 )  

from (3 .22 )  and (3 .24)  and integrating the resultant equations, we 

- 2v + hF - ap/ag  = 0, 

Eliminating 
obtain 

Matching of the solutions for the Ea-layer with those for the Ea-layer gives 

5- m 5-0 

25 t T = fi(Z) +f&) 5. 

lim (29 + F )  = lim (26 + P) .  

The right-hand side is identically zero [see ( 3 . 8 ) ] ,  consequentlyf,(z) andf,(z) must be 

jj = -IT. (3 .25 )  zero. Therefore we obtain 

Elimination of all dependent variables except F leads to the following governing 

a6F/a56 + 4( 1 + h) a2F/az2 = 0. (3 .26)  
equation for T’: 

- 
2 

If a stream function 3 defined by 

u = a$/az, w = a q p g  (3 .27)  

is introduced then the boundary conditions for 3 are g(z = & A )  = 0. Substituting 
(3 .25 )  and (3 .27 )  into (3 .22 )  and integrating the resultant equation with respect to z we 
obtain 1” (azT/a<2) dz = 0, (3 .28)  

where the boundary conditions for 3 have been used. Integrating (3 .28)  twice with 
respect to 6, we obtain 

= 2 A ( a + b [ ) ,  (3 .29)  

where the constants a and b will be determined later. The temperature should con- 
sist of two parts: a + b c ,  which is independent of z, and a part which satisfies the 
equation 

- A  

T dz = 0. L - 
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Because of the symmetry of T as a function of z, we write T as a Fourier series: 
W - 

T = a+bC+ 2 { fo , (~ )+Ei~ . ; f i , (~ ) }cos[~n( z+A) /A] .  (3.30) 

Here the terms higher than O(Ei%) have been neglected for the sake of simplicity. 
Within this approximation, the analysis of the Ekman extension of the E*-layer is not 
required. The higher-order terms neglected represent a rechannelling flow O(E4), while 
the lower-order terms represent a closed circulation O(E&) and O(EI%) in the E*-layer. 
Since does not depend on z, it  follows that fo,(C) and f,,(C) must vanish as g-+00, 

and these conditions ensure that U., W -+ 0 as <+ 00. 

m = l  

The side-wall boundary conditions (2.13) reduce to 

(3.31) I (3.32) 

By using (3.20), (3.22) and (3.25) the conditions (3.31) can be re-written in terms of 
fi,(C) (i  = 0 , l )  as follows: 

on r = 1,  i.e. C = 0. 
u=Tj=o 

vi + v = 1, a q / a r  - hE-*aT/ag = o 

f & ( O )  =f!L(O) = 0, i = 0 , l .  (3.33) 

The solutions of (3.26) satisfying (3.33) are 

(3.34) 
(: 31 2 

fin(<) = ifim(()) exp(-om<)+-exp(-&w,5)cos --w C--  , i = 0,1, [ 34 

where om = [2m(l +h)*/A]+,  and the fi,n(0) are unknown constants to be determined 
later. Using (3.1), (3.25) and (3.30), the boundary conditions (3.32) can be re-written 
in terms of the temperature: 

(3.35) 

W 

aT,/ar - a b + 2 [f&(O) + Ei+f I,(O)] cos [y,,(z + A ) ] ]  = 0, (3.36) ( m = l  

with a = hE-*. 

Matching of solutions 
In order to match the solutions for the A'*- and Ea-layers at  their interface, it is con- 
venient to expand the constants a,  b and c in powers of Ei'c. The series must be in 
ascending powers of Ei+- (Hunter 1967), i.e. 

a = a,+a,Ei++ ..., b = b , + b , E h +  ..., c = c,+c,Ei~-+ ... . (3.37) 

From a Taylor expansion of !?' about 5 = 0, we obtain 
- 
T = - c exp [ - A-4( 1 + h)* 51 = - (c, +c ,Eh  + . . .) [l - A-4( 1 + h)* 5 +  . . .] 

= -[c,+c,E~%-c,A-*(~ +h)QEi%c+O(EQ)]. (3.38) 

Comparing (3.38) with a, + a,  Eh+ (b, + b, Ei'i) + O(EB), which is an asymptotic 
form of as <-+ co from (3.30), we obtain 

a, = - co, a ,  = - c,, b, = 0, b, = co( 1 + h)*A-*. (3.39) 
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4. Solution for the inner temperature field 

governing q. is derived from (2.7)) (2.9) and (3.1) and has the form 
The whole problem has been reduced to finding a solution for q. The equation 

(4.1) 

A? = 0. (4.2) 

AT. + &hr-Y(rq) = 0. 

Hereafter we neglect h in the same manner as in I11 and IV;  then (4.1) reduces to 

The boundary conditions for (4.2) are (3.35), (3.36) and q ( z  = + A )  = 0, together 
with (3.34) and (3.39). 

Careful inspection of (3.35) and (3.36) gives us the order of magnitude of T,. As the 
right-hand side of (3.35) is 0(1), it  is easily seen that n is also O(1). Therefore the 
Ieading term of b is O(E15.) and that of c is O(1).  If we assume that a is 0 ( 1 ) ,  inspection 
of (3.36) shows that Ti is O(Ei%). Before obtaining the solution for T,, however, it  may 
not be completely obvious that Ti does not have terms O(1).  Therefore for the sake of 
completeness we expand Ti in the following manner: 

where Pn = (2n - 1)/2A and terms higher than O(EiLK) are neglected. This Fourier sine 
series satisfies automatically the boundary conditions at  z = f. A and has the correct 
symmetry for T,. 

Substituting (4.3) into (4.2) and requiring Ti to be non-singular at  r = 0, we easily 
obtain 

(4.4) 

where I. is a modified Bessel function of order zero, and the constantsa,,aredetermined 
by the boundary conditions. 

Substitution of (4.3) and (4.4) into (3.35) gives 

n=l m=l  

n = l  II) = 1 

A similar procedure for (3.36) gives 

a m  m 

Z a i n  P n  11(Pn) sin CPn(2 + A )I + 2 C Wmfirn(0) cos [ ~ m ( z  + A )I = ac0 A-4, (4.8) 
n=l m=l 

where Il is a modified Bessel function of order 1 .  Equations (4.5) and (4.7) determine 
the zeroth-order solutions in terms of E h  while (4.6) and (4.8) give the first-order 
solutions. There are two methods of solving these equations; one is to expand 
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in terms of cos [ym(z +A)]  and the other is to expand the cosines in sine series (see 111). 
Here we show only the formulae for the former case, though both methods have been 
tried: both numerical calculations give the same results. Multiplying (4.5) and (4 .7)  by 
cos [ym(z + A ) ]  and integrating from - A  to A ,  we obtain 

(4.9) 

(4.10) 

(4.11) 

W 

C a o n I l ( P n )  = 0. (4.12) 

EIiminatingfo,(0) from (4.9) and (4.10) and solving the resulting infinite linear alge- 
braic equations for a,, together with (4.12), we obtain 

n = l  

a,, = 0 .  (4.13) 

Equations (4.13), (4.10) and (4.11) give 

co = 2 ,  f o m ( 0 )  = 0. (4.14), (4.15) 

Therefore it can be concluded that there is no inner temperature field O(1) nor a closed 
circulation O(E4) in the E*-layer as was expected. The Ei-layer is the same as for the 
case of a Boussinesq fluid as far as the lowest order is concerned. 

The first-order equations are derived from (4.6) and (4.8) in a similar manner to 

C a1n 4 ( P n )  Pmn/Pm -Af im(O)  = 0, (4.16) 
(4.9) etc.: W 

n = l  

(4.17) 

(4.18) 

(4.19) 

Eliminatingfln,(0) from (4.16) and (4.17), we obtain 

W 

Z [ a u m I o ( P n ) / P n  + 2 4 ( P n ) I P m n a l n  = 0. (4.20) 

Then, combining (4.20) with (4.19) and solving the resulting infinite linear algebraic 
equations, we obtain a l n .  Substitution of a,, into (4.16) and (4.18) givesf,,(O) and 

n = l  

c1 (or all. 
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FIGURE 3. (a) Isotherms in the inner core. ( 6 )  Streamlines in the side-wall Stewartson E)-layer. 
(Only the upper half of the cylinder is shown.) The difference in the values of the non-dimen- 
sional flux on ad-acent lines is - 0.002 for solid lines and 0.0004 for dashed lines. Aspect ratio 
A = 1, a = hE-d = 0.3. 
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FIGURE 4. (a) Isotherms in the inner core. ( b )  Streamlines in the side-wall Stewartson E)-layer. 
The difference in the values of the non-dimensional flux on adjacent lines is - 0.01 for solid lines 
and 0.002 for dashed lines; A = 1, a = 3. 
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FIGURE 5. ( a )  Isotherms in the inner core. (b)  Streamlines in the side-wall Stewartson &-layer. 
The difference in the values of the non-dimensional flux on adjacent lines is - 0.03 for solid lines 
and 0-01 for dashed lines; A = 5, a: = 0.3. 
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FIGURE 6. ( a )  Isotherms in the inner core. (b) Streamlines in the side-wall Stewartson ld-layer. 
The difference in the values of the non-dimensional flux on adjacent lines is - 0.01 for solid lines 
and 0.005 for dashed lines; A = 5,  a = 3. 

The infinite linear algebraic equations are truncated and solved by Gauss’s sweepout 
method. Retaining the first 80 terms only is found to give sufficient accuracy and 
convergence. 

The results of the calculation are summarized in figures 3-6. (Note that only the 
upper half of the cylinder is shown.) The effects of compressibility can be seen from a 
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comparison of figures 3 and 4 and of figures 5 and 6. For fixed A ,  both the induced 
temperature in the inner core and the flux of the closed circulation in the E*-layer 
become larger for larger a. Comparison of figures 3 and 5 and of figures 4 and 6 shows 
that, for fixed a (the induced temperature), the flux and also the thickness of the 
regions of the closed circulation become larger for larger A .  The reason for this varia- 
tion with varying A is that the layer of heat production (near the side wall) becomes 
larger compared with the heat-loss area (near the end plates). 

5. Conclusion and discussion 
The results of the calculations reported here have shown that the flow depends 

crucially on the thermal nature of the side wall. If the side wall is thermally conducting, 
i.e. its temperature is fixed, then the effect of the wall is restricted to the narrow 
Stewartson E*- and Ef-layers, this situation being the same as in the case of Bous- 
sinesq fluids. However, if the side wall is thermally insulated, the situation is much 
more complicated. We have studied the case in which a ( = ( y  - 1 )  P, Go E-Q) is O( 1) .  
In  this case, a meridional flow in the E)-layer, induced by Ekman suction, produces a 
perturbation in the temperature O ( E h )  in the inner core. The temperature pertur- 
bation produces a thermal wind O(Ei%) in the inner core, and this thermal wind 
induces a closed circulation O(EA) in the E+-layer. The resultant inner flow is dragged 
by the side wall, with a velocity of the order of El%. Such a dragging phenomenon does 
not appear in Boussinesq fluids, nor in compressible fluids confined in a cylinder with 
a thermally conducting side wall. 

The present result would be useful in constructing the type of gas centrifuge pro- 
posed by Matsuda (19763), in which the end plates rotate faster than the side wall. In 
this type of centrifuge the inner core should not be dragged very much by the side wall 
because dragging reduces the efficiency of separation of isotopes. In  order to avoid 
dragging therefore, we have to keep the temperature of the side wall constant by some 
means. In  this case the dragging would be at most of the order h, and since we can 
reduce h significantly by adding light gas such as H, or He to the UP,, such dragging 
would be negligible. 

The present analysis is also useful from another practical viewpoint. As Durivault 
et al. (1976) pointed out, a strong closed circulation within the Stewartson layer is 
harmful for the separation because of mixing loss. In  order to prevent the circulation 
in the E*-layer, they suggested the use of either an isothermal side wall or an insulated 
side wall, the latter possibility being derived from the analysis of 111. However, as 
shown here, in the case in which an E*-layer exists at  the side wall, an insulated wall 
does not suppress the closed circulation in the E*-layer but enhances it. Therefore it 
would be better to use an isothermal side wall, if at  all practical from an engineering 
viewpoint, rather than an insulated one. 
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